Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 9(1): 120-135, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38066332

RESUMO

Oxidative stress triggers ferroptosis, a form of cellular necrosis characterized by iron-dependent lipid peroxidation, and has been implicated in Mycobacterium tuberculosis (Mtb) pathogenesis. We investigated whether Bach1, a transcription factor that represses multiple antioxidant genes, regulates host resistance to Mtb. We found that BACH1 expression is associated clinically with active pulmonary tuberculosis. Bach1 deletion in Mtb-infected mice increased glutathione levels and Gpx4 expression that inhibit lipid peroxidation. Bach1-/- macrophages exhibited increased resistance to Mtb-induced cell death, while Mtb-infected Bach1-deficient mice displayed reduced bacterial loads, pulmonary necrosis and lipid peroxidation concurrent with increased survival. Single-cell RNA-seq analysis of lungs from Mtb-infected Bach1-/- mice revealed an enrichment of genes associated with ferroptosis suppression. Bach1 depletion in Mtb-infected B6.Sst1S mice that display human-like necrotic lung pathology also markedly reduced necrosis and increased host resistance. These findings identify Bach1 as a key regulator of cellular and tissue necrosis and host resistance in Mtb infection.


Assuntos
Mycobacterium tuberculosis , Tuberculose Pulmonar , Tuberculose , Animais , Camundongos , Fatores de Transcrição de Zíper de Leucina Básica/genética , Macrófagos/microbiologia , Mycobacterium tuberculosis/genética , Necrose , Tuberculose/microbiologia , Tuberculose Pulmonar/genética
2.
J Exp Med ; 219(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36069923

RESUMO

Cellular necrosis during Mycobacterium tuberculosis (Mtb) infection promotes both immunopathology and bacterial dissemination. Glutathione peroxidase-4 (Gpx4) is an enzyme that plays a critical role in preventing iron-dependent lipid peroxidation-mediated cell death (ferroptosis), a process previously implicated in the necrotic pathology seen in Mtb-infected mice. Here, we document altered GPX4 expression, glutathione levels, and lipid peroxidation in patients with active tuberculosis and assess the role of this pathway in mice genetically deficient in or overexpressing Gpx4. We found that Gpx4-deficient mice infected with Mtb display substantially increased lung necrosis and bacterial burdens, while transgenic mice overexpressing the enzyme show decreased bacterial loads and necrosis. Moreover, Gpx4-deficient macrophages exhibited enhanced necrosis upon Mtb infection in vitro, an outcome suppressed by the lipid peroxidation inhibitor, ferrostatin-1. These findings provide support for the role of ferroptosis in Mtb-induced necrosis and implicate the Gpx4/GSH axis as a target for host-directed therapy of tuberculosis.


Assuntos
Ferroptose , Glutationa Peroxidase/metabolismo , Tuberculose , Animais , Glutationa/metabolismo , Peroxidação de Lipídeos , Camundongos , Camundongos Transgênicos , Necrose , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Tuberculose/imunologia , Tuberculose/metabolismo
3.
Antioxidants (Basel) ; 11(5)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624725

RESUMO

Heme oxygenase-1 (HO-1) is an enzyme that catalyzes the degradation of heme, releasing equimolar amounts of carbon monoxide (CO), biliverdin (BV), and iron. The anti-inflammatory and antioxidant properties of HO-1 activity are conferred in part by the release of CO and BV and are extensively characterized. However, iron constitutes an important product of HO-1 activity involved in the regulation of several cellular biological processes. The macrophage-mediated recycling of heme molecules, in particular those contained in hemoglobin, constitutes the major mechanism through which living organisms acquire iron. This process is finely regulated by the activities of HO-1 and of the iron exporter protein ferroportin. The expression of both proteins can be induced or suppressed in response to pro- and anti-inflammatory stimuli in macrophages from different tissues, which alters the intracellular iron concentrations of these cells. As we discuss in this review article, changes in intracellular iron levels play important roles in the regulation of cellular oxidation reactions as well as in the transcriptional and translational regulation of the expression of proteins related to inflammation and immune responses, and therefore, iron metabolism represents a potential target for the development of novel therapeutic strategies focused on the modulation of immunity and inflammation.

4.
Front Cell Infect Microbiol ; 12: 862582, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586249

RESUMO

Irg1 is an enzyme that generates itaconate, a metabolite that plays a key role in the regulation of inflammatory responses. Previous studies have implicated Irg1 as an important mediator in preventing excessive inflammation and tissue damage in Mycobacterium tuberculosis (Mtb) infection. Here, we investigated the pattern recognition receptors and signaling pathways by which Mtb triggers Irg1 gene expression by comparing the responses of control and genetically deficient BMDMs. Using this approach, we demonstrated partial roles for TLR-2 (but not TLR-4 or -9), MyD88 and NFκB signaling in Irg1 induction by Mtb bacilli. In addition, drug inhibition studies revealed major requirements for phagocytosis and endosomal acidification in Irg1 expression triggered by Mtb but not LPS or PAM3CSK4. Importantly, the Mtb-induced Irg1 response was highly dependent on the presence of the bacterial ESX-1 secretion system, as well as host STING and Type I IFN receptor (IFNAR) signaling with Type II IFN (IFN-γ) signaling playing only a minimal role. Based on these findings we hypothesize that Mtb induces Irg1 expression in macrophages via the combination of two independent triggers both dependent on bacterial phagocytosis: 1) a major signal stimulated by phagocytized Mtb products released by an ESX-1-dependent mechanism into the cytosol where they activate the STING pathway leading to Type I-IFN production, and 2) a secondary TLR-2, MyD88 and NFκB dependent signal that enhances Irg1 production independently of Type I IFN induction.


Assuntos
Hidroliases , Macrófagos , Proteínas de Membrana , Mycobacterium tuberculosis , Receptor de Interferon alfa e beta , Receptor 2 Toll-Like , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Indução Enzimática , Hidroliases/biossíntese , Hidroliases/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Proteínas de Membrana/metabolismo , Camundongos , Mycobacterium tuberculosis/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Fagocitose , Receptor de Interferon alfa e beta/metabolismo , Receptor 2 Toll-Like/metabolismo , Tuberculose/metabolismo , Tuberculose/microbiologia
5.
Mucosal Immunol ; 14(1): 253-266, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32862202

RESUMO

Mycobacterium tuberculosis (Mtb) infection induces pulmonary expression of the heme-degrading enzyme heme oxygenase-1 (HO-1). We have previously shown that pharmacological inhibition of HO-1 activity in experimental tuberculosis results in decreased bacterial loads and unexpectedly that this outcome depends on the presence of T lymphocytes. Here, we extend these findings by demonstrating that IFNγ production by T lymphocytes and NOS2 expression underlie this T-cell requirement and that HO-1 inhibition potentiates IFNγ-induced NOS2-dependent control of Mtb by macrophages in vitro. Among the products of heme degradation by HO-1 (biliverdin, carbon monoxide, and iron), only iron supplementation reverted the HO-1 inhibition-induced enhancement of bacterial control and this reversal was associated with decreased NOS2 expression and NO production. In addition, we found that HO-1 inhibition results in decreased labile iron levels in Mtb-infected macrophages in vitro and diminished iron accumulation in Mtb-infected lungs in vivo. Together these results suggest that the T-lymphocyte dependence of the therapeutic outcome of HO-1 inhibition on Mtb infection reflects the role of the enzyme in generating iron that suppresses T-cell-mediated IFNγ/NOS2-dependent bacterial control. In broader terms, our findings highlight the importance of the crosstalk between iron metabolism and adaptive immunity in determining the outcome of infection.


Assuntos
Heme Oxigenase-1/antagonistas & inibidores , Interações Hospedeiro-Patógeno , Interferon gama/metabolismo , Mycobacterium tuberculosis , Óxido Nítrico Sintase Tipo II/metabolismo , Tuberculose/metabolismo , Tuberculose/microbiologia , Animais , Carga Bacteriana , Interações Hospedeiro-Patógeno/imunologia , Ferro/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Modelos Biológicos , Mycobacterium tuberculosis/imunologia , Óxido Nítrico/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Tuberculose/imunologia
6.
PLoS Pathog ; 15(6): e1007871, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31226171

RESUMO

Infection of host cells by Toxoplasma gondii is an active process, which is regulated by secretion of microneme (MICs) and rhoptry proteins (ROPs and RONs) from specialized organelles in the apical pole of the parasite. MIC1, MIC4 and MIC6 assemble into an adhesin complex secreted on the parasite surface that functions to promote infection competency. MIC1 and MIC4 are known to bind terminal sialic acid residues and galactose residues, respectively and to induce IL-12 production from splenocytes. Here we show that rMIC1- and rMIC4-stimulated dendritic cells and macrophages produce proinflammatory cytokines, and they do so by engaging TLR2 and TLR4. This process depends on sugar recognition, since point mutations in the carbohydrate-recognition domains (CRD) of rMIC1 and rMIC4 inhibit innate immune cells activation. HEK cells transfected with TLR2 glycomutants were selectively unresponsive to MICs. Following in vitro infection, parasites lacking MIC1 or MIC4, as well as expressing MIC proteins with point mutations in their CRD, failed to induce wild-type (WT) levels of IL-12 secretion by innate immune cells. However, only MIC1 was shown to impact systemic levels of IL-12 and IFN-γ in vivo. Together, our data show that MIC1 and MIC4 interact physically with TLR2 and TLR4 N-glycans to trigger IL-12 responses, and MIC1 is playing a significant role in vivo by altering T. gondii infection competency and murine pathogenesis.


Assuntos
Moléculas de Adesão Celular/imunologia , Células Dendríticas/imunologia , Imunidade Inata , Macrófagos/imunologia , Proteínas de Protozoários/imunologia , Ácidos Siálicos/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Toxoplasma/imunologia , Toxoplasmose Animal/imunologia , Animais , Interleucina-12/imunologia , Camundongos , Camundongos Knockout , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Toxoplasmose Animal/genética
7.
J Exp Med ; 216(3): 556-570, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30787033

RESUMO

Necrotic cell death during Mycobacterium tuberculosis (Mtb) infection is considered host detrimental since it facilitates mycobacterial spread. Ferroptosis is a type of regulated necrosis induced by accumulation of free iron and toxic lipid peroxides. We observed that Mtb-induced macrophage necrosis is associated with reduced levels of glutathione and glutathione peroxidase-4 (Gpx4), along with increased free iron, mitochondrial superoxide, and lipid peroxidation, all of which are important hallmarks of ferroptosis. Moreover, necrotic cell death in Mtb-infected macrophage cultures was suppressed by ferrostatin-1 (Fer-1), a well-characterized ferroptosis inhibitor, as well as by iron chelation. Additional experiments in vivo revealed that pulmonary necrosis in acutely infected mice is associated with reduced Gpx4 expression as well as increased lipid peroxidation and is likewise suppressed by Fer-1 treatment. Importantly, Fer-1-treated infected animals also exhibited marked reductions in bacterial load. Together, these findings implicate ferroptosis as a major mechanism of necrosis in Mtb infection and as a target for host-directed therapy of tuberculosis.


Assuntos
Ferroptose/fisiologia , Ferro/metabolismo , Mycobacterium tuberculosis/patogenicidade , Tuberculose/patologia , Animais , Morte Celular , Células Cultivadas , Ferroptose/efeitos dos fármacos , Glutationa/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Quelantes de Ferro/farmacologia , Peroxidação de Lipídeos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Tuberculose/metabolismo , Tuberculose/microbiologia
8.
BMC Microbiol ; 16(1): 251, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27793104

RESUMO

BACKGROUND: Mycobacterium tuberculosis infection is thought to induce oxidative stress. N-acetyl-cysteine (NAC) is widely used in patients with chronic pulmonary diseases including tuberculosis due to its mucolytic and anti-oxidant activities. Here, we tested whether NAC exerts a direct antibiotic activity against mycobacteria. METHODS: Oxidative stress status in plasma was compared between pulmonary TB (PTB) patients and those with latent M. tuberculosis infection (LTBI) or healthy uninfected individuals. Lipid peroxidation, DNA oxidation and cell death, as well as accumulation of reactive oxygen species (ROS) were measured in cultures of primary human monocyte-derived macrophages infected with M. tuberculosis and treated or not with NAC. M. tuberculosis, M. avium and M. bovis BCG cultures were also exposed to different doses of NAC with or without medium pH adjustment to control for acidity. The anti-mycobacterial effect of NAC was assessed in M. tuberculosis infected human THP-1 cells and bone marrow-derived macrophages from mice lacking a fully functional NADPH oxidase system. The capacity of NAC to control M. tuberculosis infection was further tested in vivo in a mouse (C57BL/6) model. RESULTS: PTB patients exhibited elevated levels of oxidation products and a reduction of anti-oxidants compared with LTBI cases or uninfected controls. NAC treatment in M. tuberculosis-infected human macrophages resulted in a decrease of oxidative stress and cell death evoked by mycobacteria. Importantly, we observed a dose-dependent reduction in metabolic activity and in vitro growth of NAC treated M. tuberculosis, M. avium and M. bovis BCG. Furthermore, anti-mycobacterial activity in infected macrophages was shown to be independent of the effects of NAC on the host NADPH oxidase system in vitro. Short-term NAC treatment of M. tuberculosis infected mice in vivo resulted in a significant reduction of mycobacterial loads in the lungs. CONCLUSIONS: NAC exhibits potent anti-mycobacterial effects and may limit M. tuberculosis infection and disease both through suppression of the host oxidative response and through direct antimicrobial activity.


Assuntos
Acetilcisteína/farmacologia , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Adolescente , Adulto , Animais , Estudos de Casos e Controles , Morte Celular/efeitos dos fármacos , Linhagem Celular , Modelos Animais de Doenças , Humanos , Tuberculose Latente/sangue , Tuberculose Latente/tratamento farmacológico , Tuberculose Latente/microbiologia , Peroxidação de Lipídeos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Mycobacterium avium/efeitos dos fármacos , Mycobacterium avium/crescimento & desenvolvimento , Mycobacterium avium/metabolismo , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium bovis/crescimento & desenvolvimento , Mycobacterium bovis/metabolismo , NADPH Oxidases/deficiência , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Tuberculose Pulmonar/sangue , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/microbiologia , Adulto Jovem
9.
J Leukoc Biol ; 100(2): 423-32, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26884611

RESUMO

In vertebrate hosts, Leishmania braziliensis parasites infect mainly mononuclear phagocytic system cells, which when activated by T helper cell type 1 cytokines produce nitric oxide and kill the pathogens. Chemokine (C-C motif) receptor 2 is a chemokine receptor that binds primarily chemokine (C-C motif) ligand 2 and has an important role in the recruitment of monocytic phagocytes. Although it has been reported that Leishmania braziliensis infection induces CCR2 expression in the lesions, the role of CCR2 during Leishmania braziliensis infection remains unknown. Here, we showed that CCR2 has a role in mediating protection against Leishmania braziliensis infection in mice. The absence of CCR2 resulted in increased susceptibility to infection and was associated with low amounts of Ly6C(+) inflammatory dendritic cells in the lesions, which we found to be the major sources of tumor necrosis factor production and induced nitric oxide synthase expression in C57BL/6 mice lesions. Consequently, CCR2(-/-) mice showed decreased tumor necrosis factor production and induced nitric oxide synthase expression, resulting in impaired parasite elimination. We also demonstrated that CCR2 has a role in directly mediating the differentiation of monocytes into inflammatory dendritic cells at the infection sites, contributing to the accumulation of inflammatory dendritic cells in Leishmania braziliensis lesions and subsequent control of parasite replication. Therefore, these data provide new information on the role of chemokines during the immune response to infections and identify a potential target for therapeutic interventions in cutaneous leishmaniasis.


Assuntos
Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Inflamação/imunologia , Leishmania braziliensis/imunologia , Leishmaniose Cutânea/imunologia , Leishmaniose Cutânea/prevenção & controle , Receptores CCR2/fisiologia , Animais , Quimiocina CCL2/metabolismo , Citocinas/metabolismo , Células Dendríticas/parasitologia , Feminino , Inflamação/parasitologia , Leishmaniose Cutânea/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , Monócitos/parasitologia , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais
10.
PLoS Negl Trop Dis ; 9(4): e0003600, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25849562

RESUMO

BACKGROUND: Sand fly saliva plays a crucial role in establishing Leishmania infection. We identified adenosine (ADO) and adenosine monophosphate (AMP) as active pharmacologic compounds present in Phlebotomus papatasi saliva that inhibit dendritic cell (DC) functions through a PGE2/IL 10-dependent mechanism. METHODOLOGY/PRINCIPAL FINDINGS: Herein, we prepared a mixture of ADO and AMP in equimolar amounts similar to those present in the salivary-gland extract (SGE) form one pair of salivary glands of P. papatasi and co-injected it with Leishmania amazonensis or L. major into mouse ears. ADO+AMP mimicked exacerbative effects of P. papatasi saliva in leishmaniasis, increasing parasite burden and cutaneous lesions. Enzymatic catabolism of salivary nucleosides reversed the SGE-induced immunosuppressive effect associated with IL-10 enhancement. Immunosuppressive factors COX2 and IL-10 were upregulated and failed to enhance ear lesion and parasite burden in IL 10-/- infected mice. Furthermore, nucleosides increased regulatory T cell (Treg) marker expression on CD4+CD25- cells, suggesting induction of Tregs on effector T cells (T eff). Treg induction (iTreg) was associated with nucleoside-induced tolerogenic dendritic cells (tDCs) expressing higher levels of COX2 and IL-10. In vitro generation of Tregs was more efficient in DCs treated with nucleosides. Suppressive effects of nucleosides during cutaneous leishmaniasis were mediated through an A2AR-dependent mechanism. Using BALB/c mice deficient in A2A ADO receptor (A2AR-/-), we showed that co-inoculated mice controlled infection, displaying lower parasite numbers at infection sites and reduced iTreg generation. CONCLUSION/SIGNIFICANCE: We have demonstrated that ADO and AMP in P. papatasi saliva mediate exacerbative effects of Leishmania infection by acting preferentially on DCs promoting a tolerogenic profile in DCs and by generating iTregs in inflammatory foci through an A2AR mechanism.


Assuntos
Terapia de Imunossupressão , Leishmaniose/parasitologia , Nucleosídeos/farmacologia , Psychodidae/metabolismo , Saliva/química , Animais , Células Dendríticas , Feminino , Interleucina-10/metabolismo , Leishmaniose/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Psychodidae/parasitologia
11.
Proc Natl Acad Sci U S A ; 112(8): 2509-14, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25675517

RESUMO

Rheumatoid arthritis (RA) is an inflammatory autoimmune disease characterized by joint destruction and severe morbidity. Methotrexate (MTX) is the standard first-line therapy of RA. However, about 40% of RA patients are unresponsive to MTX treatment. Regulatory T cells (Tregs, CD4(+)CD25(+)FoxP3(+)) are thought to play an important role in attenuating RA. To investigate the role of Tregs in MTX resistance, we recruited 122 RA patients (53 responsive, R-MTX; 69 unresponsive, UR-MTX) and 33 healthy controls. Three months after MTX treatment, R-MTX but not UR-MTX showed higher frequency of peripheral blood CD39(+)CD4(+)CD25(+)FoxP3(+) Tregs than the healthy controls. Tregs produce adenosine (ADO) through ATP degradation by sequential actions of two cell surface ectonucleotidases: CD39 and CD73. Tregs from UR-MTX expressed a lower density of CD39, produced less ADO, and had reduced suppressive activity than Tregs from R-MTX. In a prospective study, before MTX treatment, UR-MTX expressed a lower density of CD39 on Tregs than those of R-MTX or control (P < 0.01). In a murine model of arthritis, CD39 blockade reversed the antiarthritic effects of MTX treatment. Our results demonstrate that MTX unresponsiveness in RA is associated with low expression of CD39 on Tregs and the decreased suppressive activity of these cells through reduced ADO production. Our findings thus provide hitherto unrecognized mechanism of immune regulation in RA and on mode of action of MTX. Furthermore, our data suggest that low expression of CD39 on Tregs could be a noninvasive biomarker for identifying MTX-resistant RA patients.


Assuntos
Antígenos CD/metabolismo , Apirase/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Resistência a Medicamentos/imunologia , Metotrexato/uso terapêutico , Linfócitos T Reguladores/imunologia , 5'-Nucleotidase/metabolismo , Adenosina/metabolismo , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/imunologia , Artrite Experimental/patologia , Artrite Reumatoide/patologia , Biomarcadores/metabolismo , Resistência a Medicamentos/efeitos dos fármacos , Humanos , Contagem de Linfócitos , Metotrexato/farmacologia , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/efeitos dos fármacos , Células Th1/imunologia , Células Th17/imunologia
12.
J Infect Dis ; 211(5): 708-18, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25139022

RESUMO

CD4(+)CD25(+)FOXP3(+) regulatory T cells have long been shown to mediate susceptibility to Leishmania infection, mainly via interleukin 10 production. In this work, we showed that the main sources of interleukin 10 in peripheral blood mononuclear cells (PBMCs) from patients with cutaneous leishmaniasis due to Leishmania braziliensis are CD4(+)CD25(-)CD127(-/low)FOXP3(-) cells. Compared with uninfected controls, patients with CL had increased frequencies of circulating interleukin 10-producing CD4(+)CD25(-)CD127(-/low) cells, which efficiently suppressed tumor necrosis factor α production by the total PBMC population. Also, in CL lesions, interleukin 10 was mainly produced by CD4(+)CD25(-) cells, and interleukin 10 messenger RNA expression was associated with interleukin 27, interleukin 21, and interferon γ expression, rather than with FOXP3 or transforming growth factor ß expressions. Active production of both interleukin 27 and interleukin 21, together with production of interferon γ and interleukin 10, was also detected in the lesions. Since these cytokines are associated with the differentiation and activity of Tr-1 cells, our results suggest that this cell population may play an important role in the immunomodulation of CL. Therefore, development of treatments that interfere with this pathway may lead to faster parasite elimination.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Interleucina-10/metabolismo , Leishmania braziliensis/imunologia , Leishmaniose Cutânea/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Adolescente , Adulto , Linfócitos T CD4-Positivos/química , Células Cultivadas , Criança , Pré-Escolar , Feminino , Fatores de Transcrição Forkhead/análise , Humanos , Interferon gama/biossíntese , Subunidade alfa de Receptor de Interleucina-2/análise , Subunidade alfa de Receptor de Interleucina-7/análise , Interleucinas/biossíntese , Leishmaniose Cutânea/parasitologia , Masculino , Pessoa de Meia-Idade , Subpopulações de Linfócitos T/química , Linfócitos T Reguladores/química , Adulto Jovem
13.
J Immunol ; 187(8): 4347-59, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21930966

RESUMO

Among several pharmacological compounds, Phlebotomine saliva contains substances with anti-inflammatory properties. In this article, we demonstrated the therapeutic activity of salivary gland extract (SGE) of Phlebotomus papatasi in an experimental model of arthritis (collagen-induced arthritis [CIA]) and identified the constituents responsible for such activity. Daily administration of SGE, initiated at disease onset, attenuated the severity of CIA, reducing the joint lesion and proinflammatory cytokine release. In vitro incubation of dendritic cells (DCs) with SGE limited specific CD4(+) Th17 cell response. We identified adenosine (ADO) and 5'AMP as the major salivary molecules responsible for anti-inflammatory activities. Pharmacologic inhibition of ADO A2(A) receptor or enzymatic catabolism of salivary nucleosides reversed the SGE-induced immunosuppressive effect. Importantly, CD73 (ecto-5'-nucleotidase enzyme) is expressed on DC surface during stage of activation, suggesting that ADO is also generated by 5'AMP metabolism. Moreover, both nucleosides mimicked SGE-induced anti-inflammatory activity upon DC function in vitro and attenuated establishment of CIA in vivo. We reveal that ADO and 5'AMP are present in pharmacological amounts in P. papatasi saliva and act preferentially on DC function, consequently reducing Th17 subset activation and suppressing the autoimmune response. Thus, it is plausible that these constituents might be promising therapeutic molecules to target immune inflammatory diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Experimental/imunologia , Células Dendríticas/efeitos dos fármacos , Nucleosídeos/farmacologia , Phlebotomus/química , Glândulas Salivares/química , Animais , Artrite Experimental/patologia , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Células Dendríticas/imunologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos DBA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Extratos de Tecidos/química , Extratos de Tecidos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA